
Written Exam for the M.Sc. in Economics, Winter 2014/2015

ADVANCED MACROECONOMETRICS

Remarks on the solution

About the Exam

This project examination deals with an econometric analysis of country C, inspired by the

IS-LM model as suggested by the two equations,

 − 0 = 1 ( − ) (1)

 − 2 = 3 ( −)  (2)

All assignments are based on different data sets for the  = 5 relevant variables observed

quarterly, 1975:1-2012:4. The data series are simulated from a cointegrated VAR(2) as

given by,

∆ = 0−1 + Γ1∆−1 + 0+ + 

with

 =

⎛⎜⎜⎜⎜⎜⎜⎝










⎞⎟⎟⎟⎟⎟⎟⎠   =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

−1 0 0

0 −1 0

0 0 1

0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠  and  =

⎛⎜⎜⎜⎜⎜⎜⎝
−018 0 250

0 0 0

0 010 0

0 0 −010
0 −008 015

⎞⎟⎟⎟⎟⎟⎟⎠ 

and  ∼ (0Ω). Remaining parameters are calibrated to let  behave—more or less—as

observed time series. There is a structural break imposed on the series in 1990, where the

economy entered a monetary union. In addition, there is a number of outlying observations

drawn randomly, and a typical data set will have approximately 3− 4 outliers.
For all data sets it is ensured that the lag length can be chosen to  = 2 (based on the

SW information criteria) and if the correct outliers are modelled with dummy variables,

the trace test for the cointegration rank will correctly suggest a cointegration rank of  = 3.

In addition, the true structure of the cointegration space is not rejected by a likelihood

ratio (LR) test. It is not important per se that the students recover the true DGP, it is

more important that they use sound arguments and that they convincingly motivate the

choices they make.

There are 5 sections with an unequal number of questions and unequal difficulty. I

suggest a tentative weight of 20% for each section. The last Section 5 with extensions to
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the basic analysis is on the boundary of what they have seen. I will suggest to be a bit

flexible here (I have not seen any student solutions yet!).

1 Background and Statistical Model

[1] The solution should interpret (1) and (2) as equilibrium relationships and suggest a

cointegration rank of  = 2 with

 =

⎛⎜⎜⎜⎜⎜⎜⎝










⎞⎟⎟⎟⎟⎟⎟⎠ and  =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1

1 −2
1 0

0 3

−1 −3

⎞⎟⎟⎟⎟⎟⎟⎠ 

which could also be stated with  included.

The Granger representation should be stated in terms of ⊥ and ⊥ As a minimum,
it should be mentioned that the model suggests − = 3 common stochastic trends,
and the interpretation should be explained in terms of long-run and short-run impact

of shocks, e.g. as impulse-response function coefficients. The good solution may

suggest a specific ⊥, e.g.

⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
−12 −3 3 + 12

−1 0 1

1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ 

but I guess they are not used to find orthogonal complements by hand.

[2] If inflation is stationary, then  = 3 with

 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0

1 −2 0

0 0 1

0 3 0

−1 −3 0

⎞⎟⎟⎟⎟⎟⎟⎠ and ⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
−3 3 + 12

0 1

0 0

1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎠ 

where ⊥ now has a zero row, i.e. a zero loading to the stochastic trends.
[3] If  − ,  −, and  −  are stationary, then  = 3 and

 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0

−1 0 0

0 −1 0

0 0 1

0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ and ⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0

1 0

0 1

0 1

0 1

⎞⎟⎟⎟⎟⎟⎟⎠ 
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In this case the LM curve holds for the economy with homogeneity with respect

to income, 2 = 1, and the semi-elasticity with respect to opportunity costs, 3,

determined by the adjustment coefficients in . The IS curve, on the other hand,

does not hold as an equilibrium relationship as  is an I(1) process. The good

solution may elaborate on the implication if  was in fact trend-stationary to make

the IS curve hold.

[4] The solution should set up and estimate an empirically relevant model. The model

should include the deterministic linear trend suggested by the IS curve, and the

possibility of a break in 1990 should be considered. The analysis should state and

test the assumptions for the model and include dummies for outlying observations.

The good solution uses recursive estimation to test the assumption of constancy of

the parameters and also uses this to argue for the presence of a structural break.

2 Estimation and Cointegration Rank

[5] The solution should state the Gaussian log-likelihood function,

log(Ω) = −
2
log(2)− 

2
log |Ω|−

X
=1

()
0Ω−1()

where () = −
P

=1Π−−. Using Ω̂() = −1
P

=1 ()()
0, this could

be rewritten as the concentrated likelihood,

log() = log( Ω̂())

= −
2
log(2)− 

2
log
¯̄̄
Ω̂()

¯̄̄
− 1
2

X
=1

()
0Ω̂()−1()

= −
2
log(2)− 

2
log
¯̄̄
Ω̂()

¯̄̄
− 1
2

X
=1

tr
³
Ω̂()−1()()0

´
= −

2
log(2)− 

2
log
¯̄̄
Ω̂()

¯̄̄
− 

2
tr

Ã
Ω̂()−1

1



X
=1

()()
0
!

= −
2
(1 + log(2))− 

2
log
¯̄̄
Ω̂()

¯̄̄


where the first term does not depend on .

[6] The solution should explicitly derive the error correction form for the empirical

model to obtain, e.g.

∆ = Π−1 + Γ1∆−1 +  + 

The solution should then write the characteristic polynomial for the model,

|()| = |(1− )−Π − Γ1 (1− ) | = 0
and explain that a unit root, |(1)| = 0, implies that |(1)| = |Π| = 0, such that Π
has reduced rank.
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[7] As a reaction to the internet blog, the solution should explain that the cointegrated

VAR analysis does not assume the presence of unit roots. The general model is an

unrestricted VAR, and unit roots impose testable restrictions on the model. The

setup also allows some variables to be stationary, as in question 2 above.

[8] The solution should explain how to calculate the LR statistic for reduced rank based

on the ordered eigenvalues, ̂1 ≥ ̂2 ≥  ≥ ̂, solving the usual eigenvalue problem¯̄
11− 10

−1
00 01

¯̄
= 0, i.e.

LR( | ) = −
X

=+1

log(1− ̂)

Most solutions have probably identified a structural break in which case the as-

ymptotic distribution should be simulated. The solution should explain how the

Brownian motions in the limiting distribution are approximated by random walks,

and how the distribution is simulated, e.g. using

tr

⎧⎨⎩
X
=1


0


Ã
X
=1


0


!−1 X
=1


0


⎫⎬⎭ 

where  ∼ (0 1),  = (
P−1

=1 
0
 )

0 corrected for a constant,  is a time trend
and  is a dummy that breaks after the same proportion of observations as it is

the case for the empirical model. Evaluating the statistic for many realizations of

random sequences of 1   , with some large  , allows a characterization of the

distribution, for example in terms of quantiles that can be used as critical values for

the test.

To determine the cointegration rank, other indicative sources of information may

also be considered, e.g. number of characteristic roots close to unity, strength of

error correction, visual appearance of linear combinations, or recursive trace tests.

3 Hypotheses Testing

[9] Based on the obtained cointegration rank, the solution should tests if  − ,

−, or  are stationary with or without the included deterministic components.
The solution should explain how to formulate and test the hypotheses and how to

calculate the degrees of freedom. For  = 3, stationarity of  would correspond

to  = (3 2 3) where 3 = (0 0 1 0 0)0 and 2 3 unrestricted. This imposes

4 − ( − 1) = 2 overidentifying restrictions and the LR statistic is asymptotically

2(2) under the null.

[10] Next, the solution should test the hypothesis that one of the stochastic trends affects
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only money and income and in the same magnitude, i.e. corresponding to

⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 ∗
1 ∗
0 ∗
0 ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎠ 

where ∗ denotes an unrestricted coefficient. The solution should explain that a

known vector in ⊥ is implemented as a subspace restriction on  of the form

 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

with  ∈ R4×3 unrestricted. This imposes 3 restrictions and the LR statistic is

2(3).

[11] Next, the solution should test the hypothesis that one of the stochastic trends is

determined by cumulated shocks to income, i.e. 1 =
P

=1 . This corresponds

to

⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 ∗
1 0

0 ∗
0 ∗
0 ∗

⎞⎟⎟⎟⎟⎟⎟⎠ and  =

⎛⎜⎜⎜⎜⎜⎜⎝
∗ ∗ ∗
0 0 0

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ 

corresponding to weak exogeneity of income. The statistic is 2(3).

Likewise, 1 =
P

=1( − ), corresponds to

⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 ∗
0 ∗
0 ∗
1 ∗
−1 ∗

⎞⎟⎟⎟⎟⎟⎟⎠ and  =

⎛⎜⎜⎜⎜⎜⎜⎝
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
  

  

⎞⎟⎟⎟⎟⎟⎟⎠ 

which is again 2(3).

[12] Finally, the solution should test that each of the shocks have only transitory effects.

For  that corresponds to

⊥ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0

∗ ∗
∗ ∗
∗ ∗
∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ and  =

⎛⎜⎜⎜⎜⎜⎜⎝
 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗
0 ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ 
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for some coefficient , which imposes two overidenifying restrictions.

The solution should note that there can be at most  = 3 shocks with only transitory

effects, as we need −  = 2 common stochastic trends.

4 Identification

[13] The solution should explain that an identifying structure could be obtained by im-

posing individual restrictions of the form,

 = (1 

2  


) = (1122 ) 

where  is a known matrix and  is a vector with parameters to be estimated,  =

1 2  . Generic identification is checked by considering the usual rank conditions.

For all  and  = 1      − 1 and any set of indices 1 ≤ 1  · · ·   ≤  not

containing  it holds that

 (1     ) = 
¡
0 [1 · · · ]

¢ ≥ 

where  = ⊥ for all . The explanation may be less formal, but has to stress that
the restrictions imposed on relation  cannot be satisfied by any linear combination

of other relations.

[14] Next the solution should impose identifying restrictions. It should explain how to

proceed and give an economic interpretation of the long-run relationships and the

equilibrium adjustment with reference to the IS-LM framework. The solution may

use the automatic approach as implemented in CATSmining, but has to explain the

approach taken.

[15] Next it should carefully interpret the Granger representation, i.e. explaining the

pushing forces in the system in terms of the stochastic trends and their impact.

[16] If the equation for the short interest rate, , corresponds to the rule-based mon-

etary policy of a central bank, then the residual,

 = ∆ − (∆ | −1  −) 

measures unexpected monetary policy shocks. To test if inflation is not controllable

by the central bank in the long run, we should test that unexpected monetary policy

shocks have no long-term effect on inflation. This can be formulated as an hypothesis

on the long-run impact matrix of the Granger representation, i.e. that element 3,4

in  = ⊥ (0⊥( − Γ1)⊥)−1 0⊥ is zero. The ong-run impact matrix, , is reported
by CATS together with standard errors or t-values for Wald testing.

The solution should also explain that this hypothesis is difficult to test using a like-

lihood ratio test, because a restriction on a single element in  imposes complicated

nonlinear restrictions on the parameters in  and . Hence, this requires restricted

numerical optimization of the restricted likelihood function.
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5 Extensions

[17] (Great Moderation) Now, a heteroskedastic model is considered,

 =

X
=1

Π− +  +   ∼
(

(0Ω1) if   1989 : 4

(0Ω2) if  ≥ 1990 : 1 

where Ω2 implies smaller variances of individual variables than Ω1. The likelihood

function is now

log(Ω) = −
2
log(2)

−1
2
log |Ω1|−

1X
=1

()
0Ω−11 ()

− − 1

2
log |Ω2|−

X
=1+1

()
0Ω−12 ()

with 1 corresponding to the observation 1989 : 4. The solution should state the

maximum likelihood estimators

Ω̂1() =
1

1

1X
=1

()()
0 and Ω̂2() =

1

 − 1

X
=1+1

()()
0

and the very good solution would derive this taking derivatives of the likelihood

function. This would correspond to a concentrated likelihood function

log() = −
2
(1 + log(2))− 1

2
log
¯̄̄
Ω̂1()

¯̄̄
−  − 1

2
log
¯̄̄
Ω̂2()

¯̄̄


There is no closed form estimators for .

The impulse response function in the heteroskedastic model (as well as the ordering

etc.) depends on Ω, and now the results are different before and after 1990. An

impulse response analysis using Ω̂2 and ̂ would be standard and the interpretation

would be the effect of shocks in the second regime, after the moderation.

[18] (Inference on Contemporaneous Causal Structures) Using graph theory,

we would start with a fully saturated skeleton:

Since Corr(1 2) = 00543, Corr(1 4 | 3) = 00216, and Corr(2 4 | 3) =
00046 are insignificant, we delete the edges 1− 2, 1− 4, and 2− 4, to get an
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undirected graph:

We observe that Corr(1 2) = 00543 is insignificant while Corr(1 2 | 3) =
−01925 is strongly significant suggesting to orient the triple 1 − 3− 2 as an un-

shielded collider, 1 → 3 ← 2. No additional colliders are found, as Corr(1 4 |
3) = 00213 and Corr(2 4 | 3) = 00026 are insignificant. This suggests to ori-
ent 3 → 4 to avoid a collider which is not supported by the conditional correlation

structure. The class of observationally equivalent structures in this case consists of

one member, given by the directed graph:

An orthogonal impulse response analysis could be based on a lower-triangular Choleski

decomposition of the the residuals covariance matrix, and would depend on the or-

dering of the variables. The derived contemporaneous causal structure could guide

the ordering of the variables, e.g. as  = (1 2 3 4)
0 or  = (2 1 3 4)0.

[19] (Measurement Errors) Now we discuss a model with measurement errors:

∆ = 0−1 + 

 =  +

where only  is observed, and  ∼ (0Ω),  ∼ (0Σ).

The solution should derive an equation to show the behavior of . We note that

 =  − , and

∆ ( − ) = 0 (−1 − −1) + 

∆ = 0−1 +  +  −
¡
 + 0

¢
−1

which is an vector ARMA-type process.

To discuss cointegration, one could start with the Granger representation for  :

 = ⊥
¡
0⊥⊥

¢−1
0⊥

X
=1

 + ∗() +
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where ∗() is a convergent matrix polynomial and  depends on initial values.

Therefore, we have for ,

 =  +  = ⊥
¡
0⊥⊥

¢−1
0⊥

X
=1

 + ∗() ++ 

We note that  is I(1) due to
P

=1 , and that

0 = 0∗() + 0

is still stationary such that  is the cointegration matrix of rank .

If the measurement error was an I(1) process,  = −1 + , then cointegration

would be lost because 0, and hence 
0 is now an I(1) process.
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